The world is thirsty®

A SOLUTION.

- 24V device designed for outdoor use
- 4-gallon reservoir
- Internal 24V pump designed to pump water to plants and animals
- Requires a minimum 1KW of solar power
- 7.5 10 gallons a day with continuous use at 75°F, 75% relative humidity
- Factory cost is \$500 to \$550 at scale
- User supplies own batteries, solar charge controller, and solar panels
- Optional potable water filtration system

SW TEXAS CITRUS CASE STUDY

THE CONDITIONS

Hot, Humid

110 trees to an acre

Plagued by drought

20,000 acres of fruit

\$300M industry

Farmers tearing out fields lack of rain

Inefficient flood irrigation often no longer available

Ground water is brackish

1 GALLON PER TREE PER DAY

(9 devices) / \$15,750

- ♦ Increase of 30% yield
- \$80 more per orange tree per year
- \$120 more per lemon tree per year
- \$150 for grapefuit tree per year
- Approximately \$100 more per tree

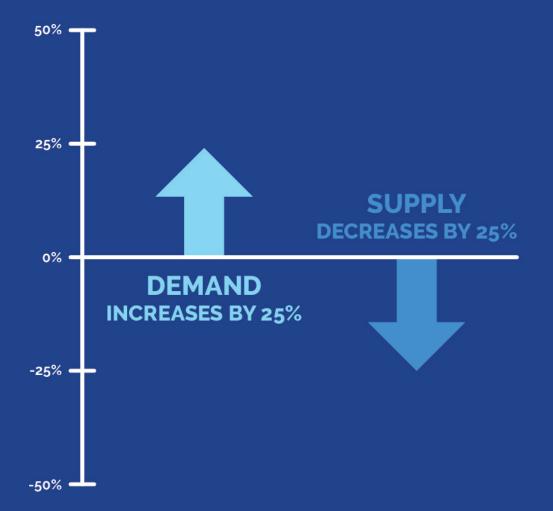
2 GALLONS PER TREE PER DAY

(18 devices) / \$31,500

- Increase of 45% yield
- \$275 more per orange tree per year
- \$400 more per lemon tree per year
- \$350 for grapefuit tree per year
- Approximately \$325 more per tree

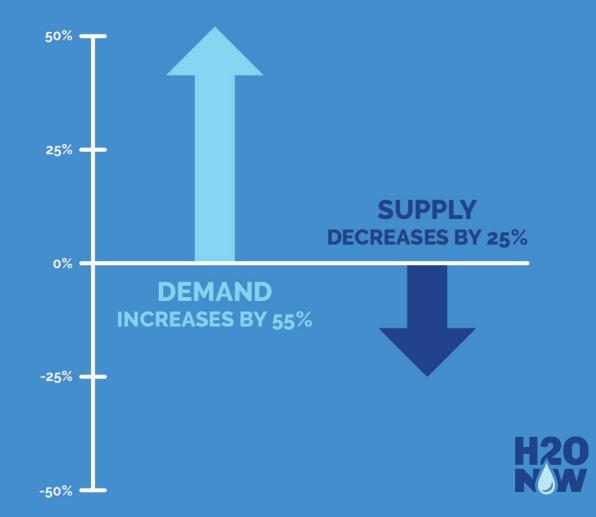
OUR 24 VOLT DEVICE COSTS \$1,750 COMPLETELY SET UP

12 Gallons per day


(assumes 25% margin and lithium ion batteries)

NET INCREASE: \$11,000 Payback in 1.25 years.

NET INCREASE: \$35,750
Payback in 0.8 years
(almost immediately).


MARKET SIZE

AGRICULTURAL WATER BY 2050

POTABLE WATER

BY 2050

PRODUCT AND TECHNOLOGY

Key Features | Benefits | Differentiation

- Lower Cost / price
- Simplicity and ease of use
- Durability and ruggedness
- Human scale & portable (shippable by the world's freight carriers, FedEx, UPS, DHL, etc.) max roughly 75lbs
- Easy to scale manufacturing partnerships in place
- HVAC can be manufactured worldwide. 5 factories in 3 continents working on this project.

- Run off DC 12V / 24V / 48 volt batteries & solar power
- Designed for outdoor use in all weather with IP 65
- Internal pump designed to move water over hundreds of feet from reservoir
- Optional potable water filtration
- Devices have removable water reservoirs

TRACTION/KEY MILESTONES

- 3 engineering universities involved in research, development, and testing
- Working with Dr. Andrew Fix, a professor at UT-Austin, and Sukru Erisgen, a hired consultant with over 30 years of experience in the HVAC industry and coauthor of the ASHRAE Handbook
- 5 factories in various stages of making prototypes, including devices that run on 110V / 220V (grid tied), 48V, and two different 12V. Our 24V Gen3 prototypes are being tested in Kenya, Kiribati, Zimbabwe, Texas, and Minnesota.
- Designing a 12V unit that requires only one lithium-ion battery and has an integrated solar charge controller with a target production cost of \$250 \$300 at scale, producing 5 gallons a day at 75°F / 75% relative humidity.
- Provisional patent submitted. Trademark submitted.
- Planning for certifications: ETL, NSF, CE, RoHS, etc.
- Delaware-based C Corporation forming in January, 2026

COMPETITION

- The water market includes well drilling, trucking water to locations, bottled water, and large-scale atmospheric water generators (AWGs) that run on diesel or are grid-tied
- The atmospheric water generation industry includes small, indoor devices powered by the grid and massive outdoor devices

HOW WE WIN

- Serve almost the total water market, agricultural and potable
- 12V to 220V serves everything from individuals to small communities
- Solar integration addresses the energy limits AWGs often encounter when outside
- Car battery compatibility provides familiar, replaceable power storage
- Devices are human scale easily moved and transported no heavy equipment for installation
- Multiple manufacturing partnerships means we can quickly scale production
- Focus on mass acceptance: durable, easy to use, and inexpensive
- Zero operating costs to the user (except filters) once established (Grid tied costs \$108 a H20 Max. Average \$70 a month at \$0.15/Kwh)

BUSINESS MODEL

- Design units and outsource manufacturing
- Sell containers of devices / reservoirs / accessories to big box stores, NGOs, and distributors
- Sell direct to consumers and drop ship accessories via H2O Now website
- Estimated annual profits: 1st-year
 \$318,000, 2nd-year \$461,000,
 3rd-year \$1,639,000

POTABLE WATER CASE STUDY

A GALLON OF WATER

- ♦ Costs \$1.00 per gallon
- Remote regions often pay \$2.00 to \$5.00 a gallon for delivered water
- Premiums for portable, reliable water generation

\$2,737 ANNUAL ESTIMATED COST

(5 gallons per day at \$1.50 per gallon)

OUR 12 VOLT DEVICE

- Potable water
- Lithium ion battery

\$975 TOTAL ESTIMATED COST

(including 25% margin)

GO TO MARKET STRATEGY

SALES CHANNELS:

- Government agencies / non-governmental organizations, i.e. World Food Programme, UNICEF, Save the Children, Island Nations, etc.
- Distributors / Retailers, i.e. big box stores; agricultural distributors, e.g. Home Depot, Menards, Lowes, Tractor Supply, etc.
- Direct to consumer off the H2O Now website

TARGET SPECIFIC GEOGRAPHIES:

- Our devices perform best in humid environments, especially environments with both high temperature and high humidity. Therefore, we are primarily targeting:
 - o Coastal regions, especially those closer to the equator
 - Island regions near the equator

THE TEAM

Jason Amundsen is an entrepreneur & farmer. Created Locally Laid Egg Company in 2012. He farms in NE Minnesota.

Lucie Amundsen has 25 years of marketing experience, including social media and public relations.

Nate Capistrant has his degree in engineering physics and is the project manager and lead Engineer.

Sam Eichelberger has his degrees in mechanical engineering and engineering physics and is the research and design engineer.

Will Bengtson has his degree in electrical engineering and does electrical design and troubleshooting, compliance, and insurance.

THE ASK \$1.5 M

- Prototypes / initial device purchases / testing equipment
- Marketing
- Testing / certifications
- Travel
- Salaries

THREE PROBLEMS WE'RE SOLVING

+ BONUS SOLUTION

- Creating water where there was none.
- Water where the user needs it.
 Transporting water is a tremendous cost and burden. It needs to be pumped, pushed, and trucked which are enormous expenses.
- Water purity. In many parts of the world, there are contaminants in ground water.
- **Bonus**: Can massively reduce the need for the carrying of water.

PROJECTIONS

	2026 - 5,000 units	2027 10,000	2028 25,000
Sales (Revenue)			
Total Income	\$3,600,000	\$6,625,000	\$16,312,500
COGS (Cost of Goods Sold)	\$2,775,000	\$5,300,000	\$13,000,000
Gross Profit	\$825,000	\$1,325,000	\$3,312,500
Margin	23%	20%	20%
Operating Expenses	\$15,000	\$35,000	\$40,000
Cost of Sales (transportation / warehouse	\$137,000	\$275,000	\$687,500
Marketing	\$20,000	\$40,000	\$80,000
Cost of Labor	\$180,000	\$250,000	\$320,000
Administration expenses	\$20,000	\$22,000	\$24,000
R&D	\$40,000	\$52,000	\$62,000
Travel	\$10,000	\$25,000	\$50,000
Total Operating Expenses	\$407,000	\$664,000	\$1,223,500
Net Income	\$418,000	\$661,000	\$2,089,000
Less taxation	\$100,000	\$200,000	\$450,000
Net profit for the year	\$318,000	\$461,000	\$1,639,000
Less CapEx spent	\$0	\$0	\$0
Less Working Capital Increased	\$0	\$0	\$0
Net Cash Flow Before Financing	\$318,000	\$461,000	\$1,639,000
Starting Cash	\$0	\$318,000	\$779,000
Plus Financing (Funding)	\$0		\$0
Net Cashflow - Ending Cash	\$318,000	\$779,000	\$2,418,000

INTELLECTUAL PROPERTY

- Trademark request: "The World is Thirsty"
- Patent request centers around:
 - Modularity with three primary parts:
 - HVAC (core/top) module
 - Filtration (middle) module
 - Reservoir (bottom) module
 - Held together via latches and overlapping walls
 - Only top module is required. Others are optional.
 - Stackability:
 - Multiple top modules may be stacked to scale water production
 - Also held together via latches and overlapping walls
 - Weather-data controller:
 - Uses local weather data and forecasts to determine where diminishing battery life is best used to most efficiently produce water

48-VOLT DEVICE

(Tentative Details)

- Expected to create 15 gallons a day at continuous use at 80°F / 60% humidity.
- We will sell the device separately in two parts, the upper HVAC system and the lower water reservoir. One reservoir can be for agricultural water and a different reservoir is for potable water.
- Operates on 48V, but the user can instead use a 24V battery and the device automatically boosts the power to 48V.
- Requires lithium-ion batteries.
- Would have a calcium carbonate filter to increase PH.
- Requires approximately 1400W of solar to operate.
- Has built in solar charge controller.
- No cost estimates yet.
- Upper portion should weigh about 75lbs.

12-VOLT DEVICE

(Tentative Details)

- Expected to create 5 gallons a day at continuous use at 75°F / 75% humidity.
- We will sell the device separately in two parts, the upper HVAC system and the lower water reservoir. One reservoir can be for agricultural water and a different reservoir is for potable water.
- Operates on 24-volt. The user can use either a 12 or 24 volt battery. If using a 12-volt battery, the system automatically boosts it to 24 volts without user input.
- User supplies their own battery, either lead acid or lithium ion.
- Would have a calcium carbonate filter to increase PH.
- Requires approximately 500 to 600 W of solar to operate.
- Comes with solar charge controller.
- No cost estimates yet but should cost \$250 \$300 at scale...
- Upper portion should weigh about 30bs.
- Requires 12-volt lithium ion battery or two, 12-volt lead acid in parallel.

UNIVERSITIES

Working with Us

We are currently working with three engineering universities in the United States

- The University of Minnesota Duluth
 - Senior design program
- The University of St. Thomas
 - Senior design program
 - Undergraduate research program
- The University of Texas Austin
 - Research with Dr. Andrew Fix
 - Research with PhD student

